BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

BACKGROUND

- LLMs can learn from information in prompt without training, known as in-context learning
- •When LLMs are deployed as autonomous decision-making agents, can they effectively balance exploration and exploitation to maximize payoffs?
- •Simulating LLMs through sequential decisionmaking problems can help us evaluate them by comparing their performance with established strategies and find methods to encourage these behaviors
- •Extracting activations during these tasks can help us gauge LLMs understanding of the explore-exploit trade-offs and maybe steer them in more optimal directions

RESULTS

- •Our classifier was able to tell, with greater than 90% accuracy in some layers, whether a decision was Greedy or Anti-greedy.
- •We were not able to steer the model towards being more/less greedy. (Fig.6)
- •We were not able to predict the activations using UCB or Greedy values.

REFERENCES

Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C., & Slivkins, A. (2024, March). *Can large language models explore in-context?*. arXiv.

https://arxiv.org/abs/2403.15371

Can LLMs Understand Multi-Armed Bandit Tasks?

¹Isaac Cohen, ¹Hiten Malhotra, ²William M. Hayes

¹Department of Computer Science, ²Department of Psychology

Prompt

You are in a room with 5 buttons labeled blue, green, red, yellow, purple. Each button is associated with a Bernoulli distribution with a fixed but unknown mean ...

MAB instance

Out of 100 steps, so far you have played ...

Greedy/Non - Greedy history

•

Fig.1: 2 generated prompts with preloaded

history of decisions made using an Epsilon

greedy algorithm in MAB instances.

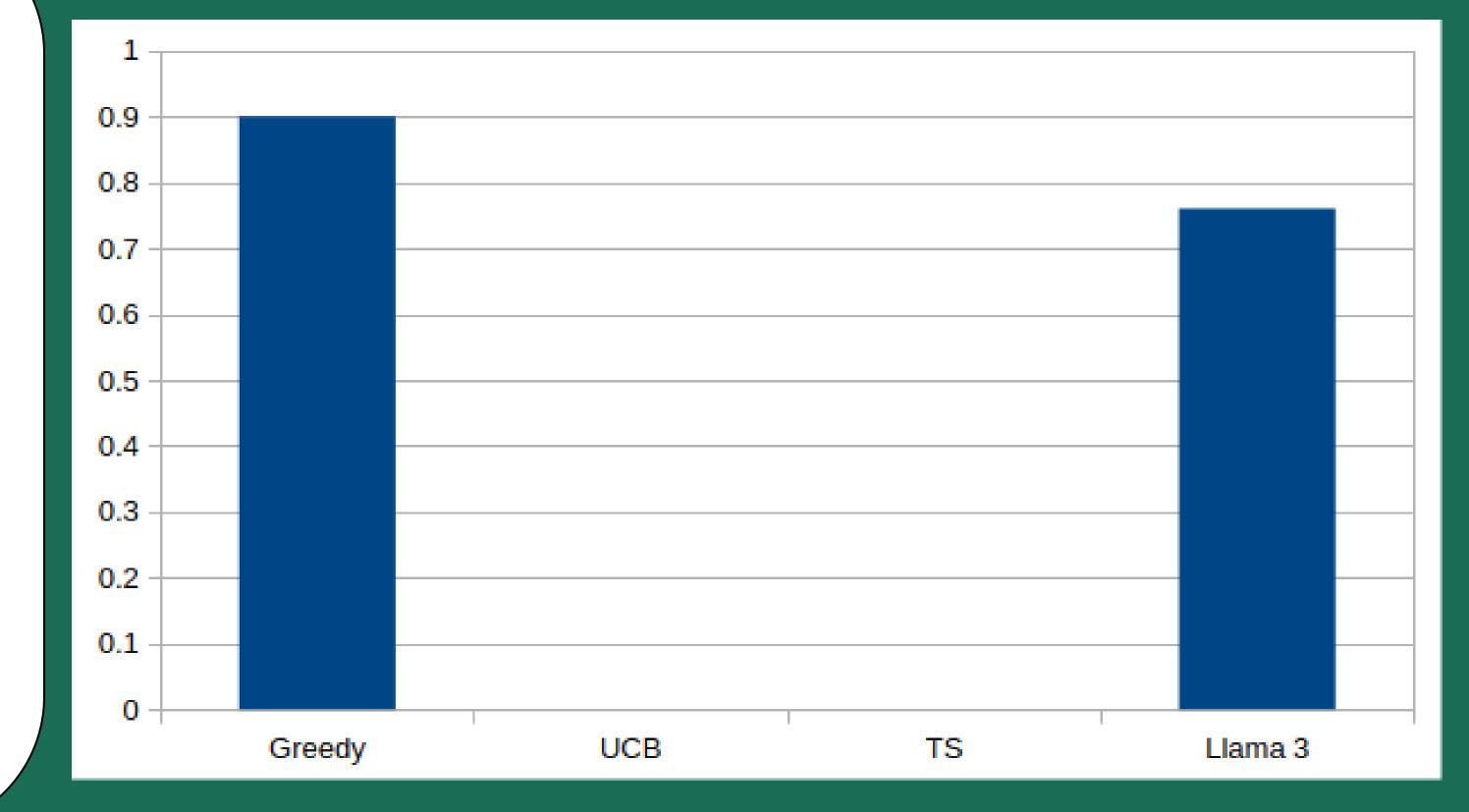


Fig.2: Proportion of replicates that never select the best arm in the latter half of trials.

Multi head Masked attention block Feed Forward Neural Network Decoder block Decoder Block Decoder Block x_1 x_2 x_3 x_4

Fig.3: Extracted N activation vectors after each decoder block from LLMs for each prompt. The high dimensional vectors are reduced to the significant dimensions using PCA.

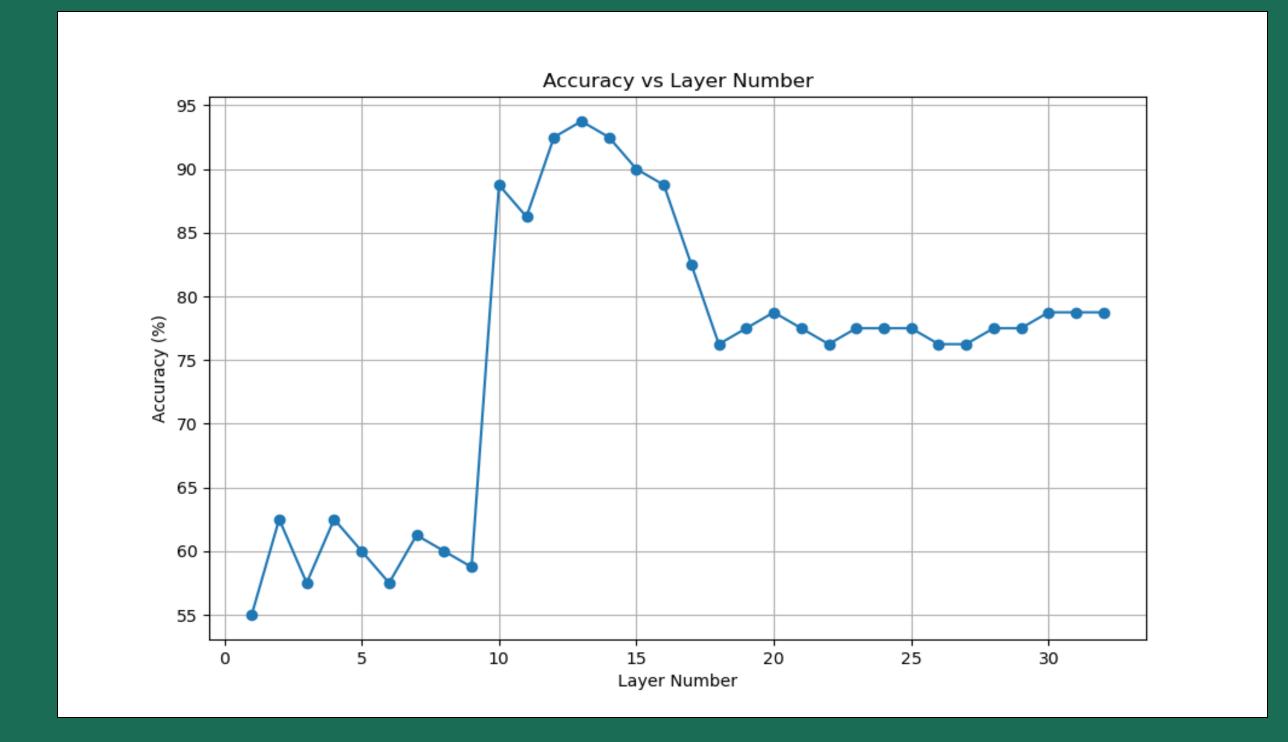


Fig.4: Accuracies of a logistic regression model in predicting based on PCA values of activation vectors whether they were generated by greedy or anti-greedy prompts (Llama 3 8B).

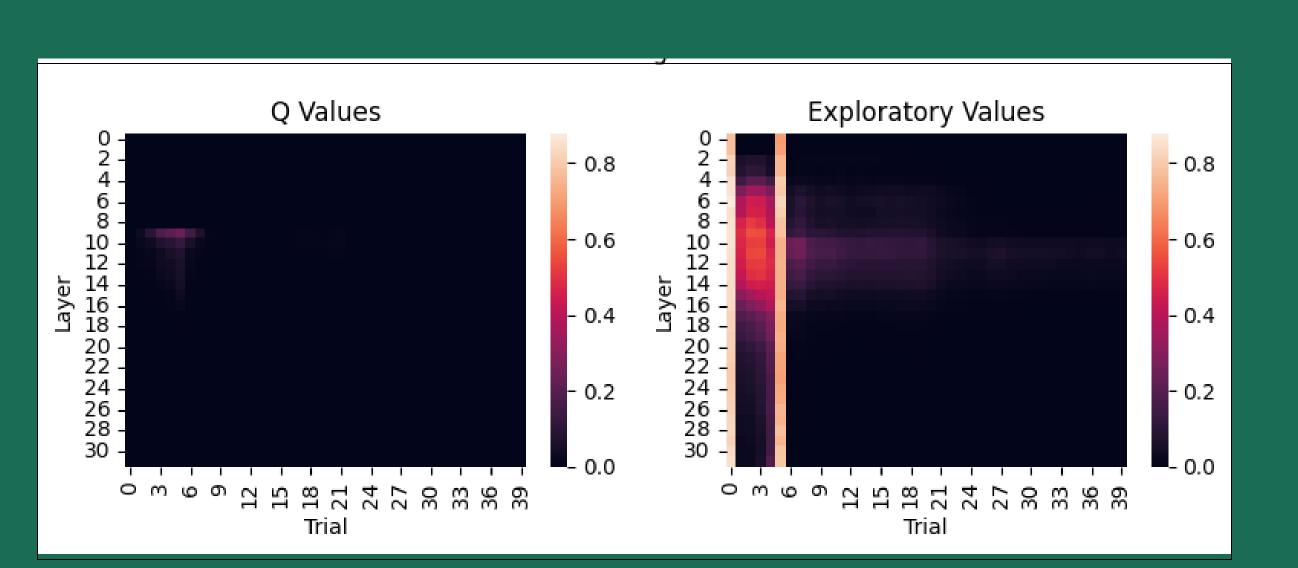


Fig.5: Activation neurons association with Q values (greedy values) and Exploratory values when prompted with UCB choice history. Model: Llama 3 8B

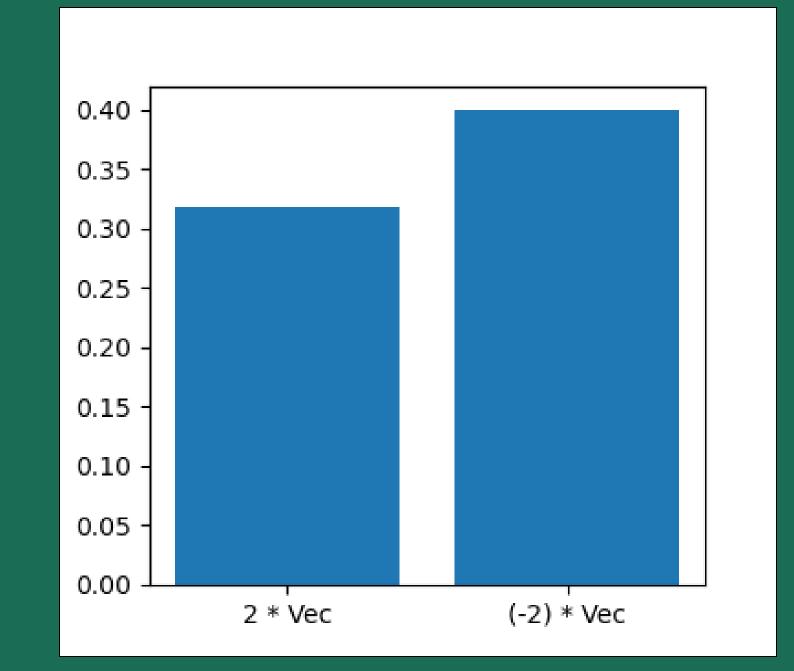


Fig.6: The model is slightly more greedy when we subtract twice the steering vector than when we add it twice.

DReaM Lab Decision Research and Modeling

METHOD

- 1.Do LLMs inherently make explorative or exploitive choices?
- •Simulated reinforcement algorithms and LLMs (prompts using problem summary, choice history and problem hints) in a 5-armed bandit task with Bernoulli distribution rewards for each arm.
- •Replicated (Krishnamurthy et. al 2024) "Can Large language models explore in-context?" (Fig.2)
- 2 Do LLMs understand the trade-off?
- •Extracted activations for token representing selected color at each layer in decoder only LLMs for greedy and anti-greedy choice history generated prompts.

 (Fig.4)
 - Using Principal Component Analysis reduced the activation vectors for each prompt to 5 dimension to overcome feature redundancy
 - Trained a Logistic regression model (for each layer) using PCA values and associated prompts as classes
 - Computed steering vector using average difference between greedy and anti-greedy activations
 - Attempted to steer the model by inserting vector during inference
- •Using UCB history generated prompts, we check for association between neurons in each activation at each layer (Fig. 5) and
 - Q values (mean reward received for each arm/ no. of times it was picked).
 - Uncertainty factor (responsible for the exploratory behavior in UCB method).