BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Grand Challenges

- Chip miniaturization limitations
- Heat flux >350 W/cm² impairs cooling in compact systems
- Joint current density >10⁴ A/cm² accelerates device failure rates
- Junction T ≈ 250 °C must be tolerated while resisting thermal and electromigration stress
- Ag-Sn alloys as novel interconnects
 - Up to 4 times greater thermal 0 fatigue resistance vs Sn-Pb alloys
 - Better ductility, EM and creep resistance vs Sn-Pb alloys
 - RoHS-compliant: $\leq 0.1\%$ Pb

Growth of transistor density 1960 1970 1980 1990 2000 2010 2020

Do any Ag-Sn alloys remain undiscovered?

Machine Learning (ML) Predictions

- Standard *ab initio* search strategy (accurate but cost demanding)
 - Define the chemical space
 - Employ global search engine
 - Check T=0 K stability with DFT 0
- ML screening with MAISE [1,2] (accelerated by a factor of 10^2 - 10^3)
 - Build MLPs for selected species
 - Perform evolutionary searches
 - Use MLPs to select candidates
 - Check for high-T ground states
 - Check all results with DFT
- Predicted Ag-Sn compounds (brand-new crystal structures shown stable at the DFT level)
- AgSn₂: may form above 360 K
- $AgSn_4$: may form above 570 K

29 new stable M-Sn phases

14,000 structures examined with DFT

2,000,000 structures screened with MLPs

Calculated Ag-Sn stability at high T

Can the predicted Ag-Sn alloys be synthesized?

Synthesis of Ag-Sn Phases Predicted with Machine Learning J. Lam, O. Gorbunova, M. Islam, G. Tiwari, and T. Adhikari Physics faculty: Z. Lin and A.N. Kolmogorov

Synthesis Strategy

- Tin flux acts as solvent for dissolving raw materials at high temperature
- As the solution slowly cools, the solubility decreases, leading to the gradual crystallization of the Ag-Sn phases

How to ensure the synthesis is safe and efficient?

Vapor Pressure Estimation

Managing the vapor pressure is crucial at high temperatures

ZL Composition Calcula	tor						
Composition Calculator	Atomic Properties						
Total Mass (g) : 2			Tempera	ture (°C)			
Total Calculated Vapor Pressure: 13.484 atm WARNING: Calcu							
Elements & Indices:							
Silver (Ag)	~ .4 ×	Tin (Sn)		~ .6⊑			
Display Table:							
Element	Index	Calculated mass		S			
Ag	0.4	0.754		Liquid			
Sn	0.6	1.246		Liquid			

We estimate vapor pressure via:

1. Antoine equation (best case)

$$\log_{10}(p) = A - \frac{B}{C+T}$$

- *p*: absolute vapor pressure (mmHg)
- T: temperature (°C) A, B, C: element-specific Antoine coefficients

Antoine coefficients and valid temperature values specific to Ag and Sn [4].

	A	В	С	T _{min}	T _{max}
Ag	8.992	1.5884E+4	387.39	960.85	6,136.85
Sn	8.549	1.6656E+4	336.40	1,150.00	2,800.00

Heterogenous integration

Potential energy surface sampling

CuSn-

2. Ideal gas law (otherwise)

PV = nRT

R: gas constant $\left(0.0821 \frac{L \cdot atm.}{mol. \cdot K}\right)$

M (Na to Ar) Orbitals or e- shells

- Purify the targeted binary phases
- Test Ag-Sn as interconnects
- Attempt synthesis of other predicted Sn alloys

Primary References

- [1] A. Thorn *et al.*, *Physical Chemistry Chemical Physics*, 2023, **25**, 22415
- [2] S. Hajinazar *et al.*, *Computer Physics Communications*, 2021, **259**, 107679
- [3] J.F. Li, P.A. Agyakwa, and C.M. Johnson, J. of Electronic Materials, 2014, **43(4)**, 983
- [4] C.L. Yaws, *Chemical Engineering*, 2006, 13 **3(12)**, 52

Developing the U.S. Defense Microelectronics Workforce

Preliminary Results

Compositional analysis of the synthesized

• AgSn₂ is likely present (data not shown here)

Summary and References

Key observations

Ag-Sn alloys show significant promise as next-generation interconnects

• New Ag-Sn binary phases were predicted by machine learning

• Ag-Sn alloy was synthesized using the flux growth method

• A GUI was developed to estimate the vapor pressure

• Compositional analysis revealed $AgSn_2$ and $AgSn_4$ are likely present

Future work

• Perform X-ray diffraction to determine the crystal structure

Additional References

