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INTRODUCTION RESULTS DISCUSSION
Ancient DNA (aDNA) is characterized by Average Haplogrep Quality Score by Coverage and Minimum Base Call While traditional ancient DNA analysis typically excludes samples
low DNA yields and post-mortem A - . 10- with <5X coverage, our results demonstrate that mtDNA quality
degradation, resulting in ultra}-low - - N s_ubs_tgntial_ly imprqves at =5X depth (Eig. 2_)._ Ou_r resu_lts show no
coverage genomestt2l, Imputation methods, = 0.0 significant increase In correct haplotype identification with each
even when adapted for haploid data (1.e., AW\ | i B Cal subsequent coverage increase at >5X (p-value < 0.05).
mltochqndrlal DNA_, mtDNA), reflect o 11,/ AN ® o5 . | | |
underlying assumptions derived from diploid \L \; 13 2 - 2 Our MAVEN imputation analysis reveals a more nuanced approach may be
genome Imputation methods. The _distinc_t il |v2| |v3] |ve Em N j optimal: F_or ultrq-low coverage samples (0.25X-1X),
evolutionary patterns of mtDNA, including - 5 MAVEN imputation dramatically improves the odds of correct
lack of recombination and haplogroup- 5 - haplogroup assignment (p-value=9.41x10-*%), while higher coverage
specific variationl®l, create unique challenges. . samples (>1.5X) show diminishing returns or even decreased accuracy
B - - - -
| | 9 . with imputation (Fig. 3).
We constructed an |mpUtat|On workflow u > a I ! : ! : T : : e
(MAVEN) that leverages a standard Hidden Mean Read Coverage Post-imputation quality scores can serve as effective reliability
Markov Modell*>% (HMM, Minimac4l™), o o Fig. 2: Haplogrep3[9 haplotype average quality scores, grouped by minimum indicators. Samples with scores >0.9 consistently demonstrate higher
with a k-Nearest Neighbor®l (kNN) A . base call across coverages 1-10X. assignment accuracy across all coverage levels, with this filtering approach
supervised machine learning algorithm, and Correct Haplotype & Macrohaplogroup Assignments being particularly valuable for low-coverage samples (<1X) (Fig. 4; Table
- - - > cross Imputation Methods - ol o -
imputed Gargammel'®l-simulated ancient A HMIM (Al Actoss Imputation Mefhod 1). As a result, MAVEN has significantly higher counts of correct
mtDNA across a range of genomic coverages V'i%h)'/a’ )2023) m(o dg?;’rfacsé) 1007 —— haplotype assignments across all coverages (p-value=3.187x10-9).
to address these challenging cases (Fig. 1). kNN clustering (Uddin et al., mputation Method Coverage High-Q Total / Correct (%0)
2022) 75 - /‘ mputation vietno
’\f’_/k’k\/ Pre-Imputation
RESEARCH QUESTIONS - MAVEN 0.25X 54 /23 (42.6%)
g Mitoimp 0.5X 66 /39 (59.1%)
To What extent can st_atlstlcal Imputation com_blned with m_achme O Assignment Classification 0 75X 73149 (67.1%)
Iearnl_ng appr_oa_lches Improve _haplog roup assignment cons!stency,_and e Macrohaplogroup Match 1X 71 /46 (64.8%)
what Is tlhle' minimum s_efquepcmg r::overa_\ge reqwrle_d to ach_leve reliable 25- A Haplotype Match 1.25X 71 /51 (71.8%)
;natﬁggghomeage Identification when using a dual imputation 15X 76 /54 (71.1%)
PP ' 0 e Table 1: Summary of correctly identified haplogroups by MAVEN (Quality score >0.9).
METHODS Mean Read Coverage FUTURE DIRECTIONS
-19. 3: Number of correct haplotype & macrohaplogroup assignments by
SIMULATION Haplogrep3[29 across imputation methods and coverages 0.25-3x when compared
Gargammel (n=1000) MAVE N to the control.
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